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ABSTRACT
Stencil computations are a class of algorithms which perform
nearest-neighbor computation, often on a multi-dimensional
grid. This type of calculation forms the basis for computer
simulations across almost every field of science. The in-
creasing computational speed of graphics processing units
(GPUs) make their use for stencil computations an inter-
esting goal. However, achieving highly efficient implemen-
tations is often nontrivial, as numerous publications attest.
In this work, we propose an analytic performance model
for stencil codes on GPUs, which both delivers close-to op-
timal performance, but at the same time does not require
extensive tuning at compile or run time. We evaluate the ef-
fectiveness of our performance model using different stencil
benchmarks and with various stencil radii.

1. INTRODUCTION
One defining property of stencil computations is that they

operate on multi-dimensional arrays (grids), and an update
of one particular element of this array (a grid point) only
requires information about the nearest-neighbors within a
given distance (defining the stencil radius).
Previous works show that graphics processing units (GPUs)

are an effective device to accelerate stencil code[1–6]. They
also show that an effective and intelligent use of the different
kinds of available memory is vital to achieve even moderate
performance [2, 3].
In this work, we propose an analytic performance model

for stencil code to enable the assignment choice to be made
without the need for test runs. We implement three code
auto-generation strategies: one without any buffering, one
buffered with shared memory, and one buffered with both
shared memory and registers. Then we build a performance
model that takes thread parallelism, instruction overhead,
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memory access overhead, and latency hiding ability into con-
sideration. We employ this model to search for the optimal
block configuration for each strategy, and predict the best
performance. We evaluate the effectiveness of the perfor-
mance model with four stencil benchmarks and with various
stencil radii.
Because our calculation allows us to model the perfor-

mance accurately, we are able to evaluate performance using
a small fraction of the time required to do a test run, and
so we are able to consider a larger space than we otherwise
would, and to find more opportunities for optimization.
This work is part of Chemora[7] project, which is a code

generation and optimization framework. It takes a high-level
problem description in terms of partial differential equations
and generates highly optimized code suitable for a wide
range of heterogeneous systems[8–11]. Chemora separates
code generation and optimization into layers, starting from
the high level mathematical description and progressing to
low level optimizations for specific architectures.

2. RELATED WORK
Stencil computation is challenging for modern CPUs and

GPUs because of the high memory bandwidth requirements.
Spatial blocking [1–6] is a commonly used technique to alle-
viate both latency and bandwidth problem of off-chip global
memory. Maruyama and Aoki [3] study spatial blocking
with read-only cache and shared memory on NVIDIA’s Ke-
pler GPUs. Nguyen et al. [2] present a novel 3.5D-blocking
algorithm that performs 2.5D-spatial blocking and 1D-tem-
poral blocking for stencil computations on CPUs and GPUs.
Manually writing and tuning stencil code is time-consum-

ing as well as requiring in-depth knowledge of the CPU
and GPU architectures. A number of recent studies[12–
16] have focused on stencil code auto-generation and auto-
tuning. Holewinski et al. [12] develop compiler algorithms
for automatic stencil code generation on GPU accelerators.
Lutz et al. [13] propose an auto-tuning framework specifi-
cally for stencil computation on multi-GPU systems. Zhang
et al. [14] develop an auto-tuning technique for the auto-
generated stencil code on GPUs. They first shrink the pa-
rameter space to a small set (which could be more than 100
in the worst case), then auto-tune the code by running sten-
cil code with each parameter group and selecting the one
with the best performance. Similarly, the auto-tuning envi-
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ronment built by Datta et al. [15] also requires the program
to run with hundreds of different parameters and then select
the best one.
Meng et al. [16] establish a performance model to auto-

matically select the optimal ghost zone size and generate
appropriate stencil code. They consider the effect of com-
putation, memory transfer, and synchronization on the final
performance. Since the purpose of their work is to study
ghost zone optimization, they only model the strategy we
call “buffered with shared memory". In addition, they sim-
plify the model by assuming block configuration is a con-
stant, i.e. the number of threads in a block along each di-
mension are equal. Hong et al. [17] propose an analytic
GPU performance model, but their model are not suitable
for auto-tuning of stencil computation as it is built for gen-
eral GPU programs and it also requires manually counting
some metrics. Moreover, their model does not take shared
memory bank conflict into consideration.

3. PRELIMINARIES
The auto-tuning system described here works with CUDA

by NVIDIA, and we use CUDA terminology. A GPU con-
sists of multiple streaming multiprocessors( SMs), 14 for the
NVIDIA Kepler K20xm. GPU code executes in a unit called
a kernel, which consists of threads organized into blocks.
Threads in the same block can quickly share data. The
number of blocks and the number of threads per block make
up a launch configuration. Threads are scheduled for ex-
ecution in groups called warps, all sharing an instruction.
The warp size for the K20xm and all prior NVIDIA prod-
ucts is 32. The rate of execution is limited by warp is-
sue throughput and dependency stalls, the later of which
has many causes. Warp issue throughput varies by device
and instruction. This work assumes a few values. Double-
precision arithmetic operations issue at 2 warps per cycle
per SM (θdp = 2 wp/cyc). A block consisting of B threads,
each of which executesN DP instructions would take B N

32θdp
cycles to issue on an SM.
Dependency stalls occur when there is no warp whose

source operands are ready. The length of such stalls is de-
termined by latency, congestion, and dependence distance
effects. Many non-memory instructions have an 11-cycle
latency, which we assume is hidden, meaning that depen-
dent instructions can always be scheduled 11 cycles later
avoiding any stall. Global memory latency (the time be-
tween a load instruction and the arrival of uncached data),
Tgmem_lat, is much larger, 200-400 cycles[18]; the model uses
Tgmem_lat = 200 cyc for the K20xm.
Execution of a load instruction entails constructing mem-

ory read requests, each requesting 32, 64, or 128 contiguous
bytes. Congestion refers to the additional time added to
read requests due to off-chip bandwidth limitations. For
load instructions congestion is due to load instructions re-
questing data faster than it can be retrieved. For modeling
congestion it is convenient to work with the rate at which
off-chip data can be retrieved per SM in units of double-
precision elements. For the K20xm,
θgmem/sm = 250 GiB/s

732 MHz × 14 × 8 B/elem = 3.7242 elem/cyc.

4. OVERVIEW
A Chemora code is compiled with a user-written stencil

kernel which uses grid data functions, distributed regular
meshes. At runtime the auto-tuning system will choose a
configuration, taking into account local grid data size, sten-
cil shape, GPU capabilities, etc. It does this by sampling
a large space of configurations, and estimating the perfor-
mance of each one. The kernel code will be compiled (at
runtime) using the best configuration.
A configuration consists of the CUDA launch configura-

tion, an iteration direction and count, and a buffering strat-
egy. The buffering strategy is the method used to access the
array. The strategies are discussed below. The model can
be used to predict the best performance given a buffering
strategy.
When performing stencil computations on a GPU one

must reconcile several competing goals. On the one hand
we want to minimize thread block surface area to maximize
re-use, on the other hand we want to make efficient use of the
memory system which means fully using requests and avoid-
ing underutilization due to the thread block dimensions not
being a multiple of the respective local data size.
In addition, shared memory bank conflicts should be min-

imized. For these reasons and more, a configuration cannot
be chosen by a simple closed form calculation. The model
will consider these factors and more to come up with a pre-
diction of execution time.
The performance can be affected by any one of a number

of factors. Those considered by the model are: instruction
throughput, off-chip memory bandwidth, exposed latencies,
and contentions of various types.
Off-chip memory utilization depends heavily on the buffer-

ing strategy used, and so we turn now to the consideration
of buffering strategies.

5. BUFFERING STRATEGIES
In this work, we will focus on the low level optimization

for the GPU. In particular, we study three strategies of sten-
cil code auto-generation, and the model-driven auto-tuning
to the strategies. About the strategy that using read-only
cache to buffer data, we leave it to our future work because
of the page limitation. Read-only cache is hardware man-
aged cache, to accuraly predict its performance we need to
write micro-benchmarks to measure detailed cache parame-
ters first, such as cache line size and set associtivity.

5.1 Baseline: no buffering
Because all the data for the computation is loaded from

global memory, performance is tightly limited by global mem-
ory bandwidth. Although the performance of this method is
relatively low, it uses no shared memory and the least reg-
isters. For multi-variable stencil computations when shared
memory and registers limit occupancy, assigning a part of
variables to be without buffering can increase occupancy,
possibly increasing the overall performance.

5.2 Buffering with shared memory
Conventional shared memory buffering [1] maintains the

data stored in shared memory to be in order. That is data
fetched earlier is always stored at lower indices than data
fetched later. This requires copying useful data from higher
indices to lower indices before loading new data to the shared
memory with every iteration. Such copying operation results
in extra shared memory load and store operations. These
copy operations are inefficient in that the ratio of overhead
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Figure 1: Illustration of buffering with shared mem-
ory for stencil computation that assigns a thread
block with dx, dy, and dz threads in the x, y and z
dimension respectively. R denotes stencil radius.

instructions to load and store instructions is high.
Figure 1 illustrates the buffering strategy we propose,

which removes the requirement that memory be in order
and thereby eliminates the data copying. Instead, we re-
place data that is no longer needed with newly loaded data.

5.3 Buffering with shared memory and regis-
ters

Figure 2 shows the strategy we call buffered with shared
memory and registers. The middle layer is buffered in shared
memory, while the others are in registers.
Buffering with shared memory would fetch all the data

needed for an iteration into shared memory before computa-
tion. This requires a sufficiently large shared memory space
and many shared memory load and store operations. For
certain access patterns (sets of grid function offsets), such
as “plus" and “plus − D" access patterns, the data can be
split between shared memory and registers, reducing both
the amount of shared memory needed and shared memory
instruction overhead.
We define the pattern of accesses to a grid function to be a

plus pattern if no individual access has more than one non-
zero offset. For example, the offset (x, y, z) can only be of the
format (x, 0, 0), (0, y, 0), or (0, 0, z), where x, y, and z, can
be any integers. We define a pattern to be a plus-D pattern,
where D is a coordinate axis, if there is no individual access
in which the offsets in both the D dimension and some other
dimension are non-zero. For example, the offset (x, y, z) of
the plus-Z pattern can only be in the format of (x, y, 0) or
(0, 0, z).
A mixed register/shared memory strategy can be applied
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Figure 2: Illustration of buffering with shared mem-
ory and registers. In the second iteration, the reg-
ister values of data layer 1 (i.e. L1) are from the
shared memory of the first iteration. Similarly, the
central shared memory values of data layer 2 (i.e.
L2) are from the registers of the first iteration to
minimize global memory accesses.

to plus-D pattern grid functions on block configurations with
one thread in the D dimension (with D being either Y or Z),
and in which each iteration proceeds along the D dimen-
sion. Shared memory will only be used for the layer of data
which is orthogonal to the D dimension. Other values will
be placed in local memory, with the expectation that the
compiler will use registers for these values. This mixed reg-
ister/shared memory storage reduces shared memory usage
and assignment to a register avoids the need for a separate
shared memory load instruction.

6. PERFORMANCE MODEL
We will introduce the model for a single thread block spe-

cific to the applied code auto-generation strategy, then the
model for the total execution time.

6.1 Modeling of a single thread block
Figure 3 shows the time for executing a thread block.

We assume all streaming multiprocessors (SMs) are running
with the same block configuration CBlock:

CBlock = (dx, dy, dz, Niter, diriter) (1)
We define CBlock as above, in which dx, dy, and dz threads

are assigned to a thread block in the x, y and z dimension
respectively. Niter denotes the number of stencil points each
thread computes. The symbol diriter denotes the direction
along which the computation iterates (in this work we always
iterate along the z direction). Note that below our time
units are in clock cycles, and so times must be reported as
integers.
The execution time of a thread block can be defined as

below:
T (CBlock) = Tinit +Titer_1st +(Niter −1)Titer_oth +Tdiff (2)
This same equation will be applied for all three of the

strategies we describe in this paper, the unbuffered, the
buffered with shared memory, and the buffered with shared
memory and registers strategy.

• Without buffering: Titer_1st = Titer_oth
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Figure 3: Execution of a single thread block at the instruction level, both without (a) and with (b) buffering.
Warps are numbered W0 to Wn, and time is not meant to scale between the subplots.

• With buffering: Titer_1st > Titer_oth

Tinit denotes the time spent on initialization, including ad-
dress calculation etc. Titer denotes the time it takes to finish
one iteration. With buffering, the first iteration (Titer_1st)
takes longer time than the others (Titer_oth) as it needs to
load more data for buffering. We will discuss the calculation
of iteration time in Section 6.1.1. In Section 6.1.5, we will
discuss Tdiff , which denotes the time difference between the
first and last warp of an iteration.

Titer = Tgld + Tsst + Tsync + Tsld + Tcomp + Tgst (3)
The iteration time Titer is modeled as the sum of global

load time Tgld, shared store time Tsst, thread synchroniza-
tion time Tsync, shared load time Tsld, total computation
time Tcomp, and global store time Tgst. Tsst, Tsync, and Tsld
are zero for the unbuffered case. For the buffered case, we
will discuss the computation of Tsst, Tsync, and Tsld in Sec-
tion 6.1.2, 6.1.3, and 6.1.4 separately.
We assume the latency of floating point instructions can

be hidden. Therefore Tcomp is determined by the throughput
of floating point units. Each SM can execute 64 double
precision floating point operations per cycle (i.e. θfp = 64).
That means that for all the warps(Nwarp) to complete Nflop
floating point operations through the SM will take Tcomp
cycles. Nflop denotes the number of data elements needed to
compute a stencil point (see Table 2). Nthread/warp denotes
the number of threads in a warp, which is 32[18].

Tcomp = Nflop

⌈
Nwarp

θfp/Nthread/warp

⌉
(4)

6.1.1 Computation of Tgld and Tgst

The most complicated part of this calculation is Tgld which
we give in general form in Eq. 5. The symbol p denotes the
number of terms needed for the corresponding computation.
For the unbuffered strategy, there is only one term to con-
sider. For shared memory, however, we read in central or
boundary regions independently, and each of these loads cor-

responds to a term.

Tgld =


p∑
i=1

N
(i)
mem

λ

× Tgmem_latency

+
p∑
i=1

⌈
N

(i)
thdN

(i)
mem

θgmem/smβgm

⌉
(5)

Table 1 lists the model parameters for loading data from
global memory. N

(i)
thd denotes the number of threads as-

signed for such loading. N (i)
mem denotes the number of data

elements each thread will load. For the buffered case, as
the loaded data is stored to shared memory, it will also be
used to compute Tsst in Section 6.1.2. θgmem/sm denotes the
global memory bandwidth per SM. N (i)

thd_x denotes the num-
ber of threads along the X direction for loading data from
global memory.
We define βgm to be the global memory request utilization,

which is modeled as the ratio of the requested data size over
the actual transferred data size.
The parameters used, by model, for this equation are sup-

plied in Table 1. In Table 1, we use the following definitions:

d3 = dxdydz (6)
rx = dx + 2R (7)
ry = dy + 2R (8)
rz = dz + 2R (9)

dcut =
⌊
d3

rx

⌋
rx (10)

dcmin = min(dcut, rxry) (11)
For the unbuffered case, Nthd = dx×dy ×dz and Nmem =

Nelem (the value of Nelem depends on the stencil. See Ta-
ble 2).
The term Tgld describes the time it takes to load from



strategy iter p i N
(i)
thd N

(i)
mem

unbuffered all 1 1 d3 Nelem

buffered
with
shared
memory

1st 2 1 dcmin

⌊
rxry

N
(1)
thd

⌋
rz

2 rxry mod N
(1)
thd rz

other 2 1 dcmin

⌊
rxry

N
(1)
thd

⌋
dz

2 rxry mod N
(1)
thd dz

buffered
with
shared
memory
and
registers

1st 3
1 dcmin

⌊
rxry

N
(1)
thd

⌋
dz

2 rxry mod N
(1)
thd dz

3 d3 2R

other 5

1 d3 1

2 min(dcut, rxR) 2
⌊
rxR

N
(2)
thd

⌋
3 rxR mod N

(2)
thd N

(2)
mem

4 min(dcut, dyR) 2
⌊
dyR

N
(4)
thd

⌋
5 dyR mod N

(4)
thd N

(4)
mem

Table 1: Model parameters for computing global
and shared memory latencies. Steps with N

(i)
thd = 0

do not need to execute.

global memory. Nelem denotes the number of data elements
needed to compute a stencil point. We define the maximum
number of elements that can be loaded per thread in parallel
as λ. The value of λ is hard to model as it is determined
by the number of hardware registers and how the compiler
allocates them. For the K20xm, we assume λ is equal to 4.
The calculation of Tgst is similar to that of Tgld. The only

difference is that Nelem is fixed to be 1 as we store results
back once every iteration.

6.1.2 Computation of Tsst

Tsst =

p∑
i=1

N
(i)
elem

⌈
N

(i)
thd

Nthd/warp

⌉
βsm

θsm
(12)

The quantity βsm is the maximum number of times a store
operation will fall into the same shared memory bank within
the same warp during a kernel computation, and so can be
considered a measure of contention. The minimum value of
βsm is 1, which is also the ideal value. We denote θsm as
the shared memory access throughput. For Kepler GPUs,
θsm = 1 as a warp can have a shared memory access in every
cycle[18].

6.1.3 Computation of Tsync

All threads of a thread block have to synchronize before
sharing data to avoid race conditions. We estimate syn-
chronization time by following previous work [17] as some
latency plus a time proportional to the number of warps:

Tsync = Tgmem_lat + αNwarp . (13)
We assume α to be 10 cycles in this work for simplicity.

The dependency of α on a particular GPU is left to future
work.

6.1.4 Computation of Tsld

Tsld = Nsld × βsm_sld × Tsm_lat (14)
For the strategy buffered with shared memory, the num-

ber of shared loads Tsld it takes is equal to the number of
elements (Nelem in Table 2) each thread needs to compute a
stencil point. For the strategy buffered with shared memory
and registers, the data along Z direction is buffered in regis-
ters. Take the benchmark for the SPLUS stencil in Table 2
for example, Nsld, the number of shared loads needed for the
stencil points surrounding the center is Nsld = 4 ×R where
R is the stencil radius.

6.1.5 Computation of Tdiff

The time difference has four potential sources: warp is-
suing (Tdiff_issue), floating point computation (Tdiff_comp),
shared memory access (Tdiff_shmem), and global memory ac-
cess. The actual time difference is no less than their maxi-
mum depending on how well they overlap. We do not con-
sider the time difference from global memory since an ac-
curate modeling requires a detailed memory simulator, and
it is not important in this work. We also assume the times
will perfectly overlap.

Tdiff = max(Tdiff_issue, Tdiff_comp, Tdiff_shmem) (15)
NVIDIA Kepler GPUs have four warp schedulers (i.e.

Nwarp_scheduler = 4). Assuming a warp scheduler can issue
one warp per cycle, the time it takes to issue Nwarp warps
is:

Tdiff_issue =
⌈

Nwarp

Nwarp_scheduler

⌉
(16)

Each SM can execute 64 double precision floating point
operations per cycle (i.e. θfp = 64). That means that for all
the threads to feed one floating point operation through the
SM will take Tdiff_comp cycles.

Tdiff_comp =
⌈

Nwarp

θfp/Nthread/warp

⌉
(17)

Only one warp is allowed to access shared memory per
cycle. If there is no shared memory access, Tdiff_shared_mem
= 0. Otherwise,

Tdiff_shmem = βsm ×Nwarp (18)

6.2 Modeling of total execution time
We consider partial executions while modeling total exe-

cution time. A partial execution happens when some threads
of a thread block are idle. For a given block configuration
CBlock (see Eq. 1), the number of stencil points it computes
are dx, dy, and dz × Niter, along the x, y, and z direction.
There are eight types of CBlock corresponding to whether
(Dx mod dx), (Dy mod dy), and (Dz mod dz) are zero or
not. For a user provided block configuration CBlock, we con-
sider the non-partial (CBlock0), plus all 7 possible partial
executions (CBlocki), for i = 1, . . . , 7 during execution.
Let NCBlocki

denote the number of type i block configu-
rations. Let TCBlocki

denote the execution time of a block
with type i block configuration (i = 0, 1, . . . , 7). Note in
our code auto-generation framework, each SM only has one
thread block (i.e. Nblock/sm=1) to maximize the amount
of sharing. Let NSM denotes the number of SMs the GPU
has, then the total execution time can be modeled using the



Table 2: Benchmark characteristics
SPLUS DPLUS THB CUBE

Nelem 1 + 6R 1 + 6R (1 + 2R)2 + 2R (1 + 2R)3

Nflop 1 + 6R 2 × (1 + 6R) (1 + 2R)2 + 2R (1 + 2R)3
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Figure 4: Evaluated benchmarks. (For DP , each
point is used twice for computation.)

equation below:

Ttotal =
∑7

i=0 NCBlocki
× TCBlocki

NSM ×Nblock/sm
(19)

6.3 GPU-Dependent Parameters
The model contains explicit and implicit GPU-dependent

parameters. The value of explict parameters, such as the
number of double precision floating point operations per cy-
cle (i.e. θfp = 64), are explicitly defined by NVIDIA[18].
We assume the value of the implicit parameters by analyz-
ing assembly code and performance profiling results. We
will use micro-benchmarks to better decide these values in
our future work.

7. EXPERIMENTAL METHODOLOGY
We evaluated our auto-tuning system on nodes of the

LSU machine Shelob, equipped with two Intel Xeon E5-2670
processors, one NVIDIA Kepler K20Xm GPU, and 64 GiB
RAM.

7.1 Evaluated benchmarks
In this work we evaluate 3D stencil computations which

have 256 stencil points along each dimension (Dx = Dy =
Dz = 256), using four types of stencil benchmarks extracted
from real scientific computation, see Figure 4. Table 2 lists
the characteristics of the evaluated benchmarks. R denotes
the radius of the stencil. Nelem and Nflop denote the number
of data elements and the number of double-precision float-
ing point operations (counting fused multiply-adds as one
operation) it takes to compute a single stencil point.

7.2 Evaluation method
We ran experiments to determine how the predictions of

our auto-tuning system compared to actual executions for
choosing the best configuration.
For problem size (Dx = Dy = Dz = 256), there are

3,659,653 possible block configurations. We randomly select
200 runnable block configurations for evaluation. A block is
called runnable if there is sufficient shared memory for the
configuration. For the shared memory and registers strat-
egy, the number of threads along iteration direction has to
be one. For each of these two hundred cases, we compare
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dicted best and the measured best block configura-
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Figure 7: Best performance of auto-generated sten-
cil code achieved by pre-running 200 random block
configurations and selecting the best one.

the measured performance with the model predicted perfor-
mance.

8. RESULTS
For all stencil shapes considered, our predicted and mea-

sured performance are in high agreement, especially for the
predicted best block configurations for which the predicted
and measured performance differs by only a few percent.
Note we normalize the performance for each strategy in Fig-
ure 6 using a factor of 1.5 for the WoBuffer, 3.1 for WtSM,
and 2.5 for WtSMRES. These were empirically determined
and were necessary because we cannot model every coding
detail, and because uncertainties exist in parameters such
as the global memory latency. Note that these normaliza-
tion factors are relevant for choosing between models, but
are not relevant for picking the best configuration within a
model.

8.1 Performance of code auto-tuning
Figure 5 illustrates the performance ratio of the predicted

best block configuration over the measured best block con-
figuration. As we can see, for 11 out of 22 auto-tuning
tests(like benchmark SPLUS, strategy WoBuffer, R=1), the
predicted best block configuration is the same as the mea-
sured best block configuration. For the other 11 auto-tuning
tests, the predicted best block configuration achieves more
than 98.13% of the actual best performance. For benchmark
CUBE, strategy WtSMRES is not shown as it only applies
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Figure 6: Evaluating performance model on three code auto-generation strategies (WoBuffer, WtSM, and
WtSMRES) with four stencil benchmarks (SPLUS, DPLUS, THBTC, and CUBE), two R values, and 200
randomly selected block configurations. The horizontal and vertical axes are the measured and predicted
performance expressed in GFLOPS.

to “plus" and “plus − D" access patterns, while the access
pattern of benchmark CUBE is neither “plus" nor “plus−D"
as discussed in Section 5.3.
Figure 6 shows detailed results of the predicted (verti-

cal axis) and measured (horizontal axis) performance for all
evaluated block configurations. There are 200 block con-
figurations for all strategies of each sub figure, in which
a block configuration is shown as a marker. The perfor-
mance model predicts the block configurations that have
larger value along vertical axis would achieve better perfor-
mance. In other words, the model predicts the block config-
uration that has the largest value along vertical axis to be
the best block configuration. For each block configuration,
the value along horizontal direction denotes the measured
performance. We can see, our performance model is accu-
rate enough for auto-tuning, as the markers generally locates
on the dotted straight line in the figure. This is especially
true for the predicted best block configurations.

8.2 Performance of code auto-generation
Figure 7 illustrates the best performance of the auto-

generated stencil code. For strategy WoBuffer, the best per-
formance of all benchmarks except DPLUS, is around 65-73
GFLOPS as it is tightly bounded by global memory band-
width. As global memory bandwidth is 250 GB/s and there
is one Fused Multiply-Add operation (2 flops) on each 8-byte
data element, the expected peak performance for strategy
WoBuffer is:

2 × 250 × 10243

8 × 109 = 67.11 GFLOPS

The performance of benchmark DPLUS nearly double what
is achieved by SPLUS as each point is used twice for com-
puting a single stencil point. For the buffered strategies
WtSM and WtSMRES, the performance improvement over
unbuffered strategy WoBuffer depends on how much global
memory accesses can be reduced and buffering overhead
such as extra shared memory load and store instructions.
Generally, higher Nflop value in Table 2 means more global
memory accesses can be reduced for the buffered strategies.
Strategy WtSMRES achieves better performance than strat-
egy WtSM as it reduces shared memory load and store op-
erations by buffering some data in registers.

9. CONCLUSION
Execution driven auto-tuning puts tight limits on the size

of the parameters space that can be explored. In this work
we demonstrate model driven auto-tuning for GPUs which
avoids the delay of execution driven model execution. This
opens the possibility for exploring a richer configuration
space for auto-tuning, such as assigning an access function
(e.g. global or shared memory) to each computational vari-
able, even when each variable has a different type of stencil.
These techniques will be used in the Chemora code gener-

ation and optimization framework for differential equations,
in which we plan for auto-tuning to encompass the higher
level parts of the system up to discretization methods.
In this paper we have demonstrated a first step toward

this goal by showing how to model and tune a configuration
for a single variable and multiple stencil shapes and radii.
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